Product Code Database
Example Keywords: skirt -kindle $73
barcode-scavenger
   » Wiki: Hexagonal Crystal Family
Tag Wiki 'Hexagonal Crystal Family'.
Tag

In , the hexagonal crystal family is one of the six , which includes two crystal systems (hexagonal and trigonal) and two lattice systems (hexagonal and rhombohedral). While commonly confused, the trigonal crystal system and the rhombohedral lattice system are not equivalent (see section crystal systems below).
(2025). 9780792365907, Published for the International Union of Crystallography by Springer.
In particular, there are crystals that have trigonal symmetry but belong to the hexagonal lattice (such as α-).

The hexagonal crystal family consists of the 12 point groups such that at least one of their space groups has the hexagonal lattice as underlying lattice, and is the union of the hexagonal crystal system and the trigonal crystal system. There are 52 space groups associated with it, which are exactly those whose is either hexagonal or rhombohedral.


Lattice systems
The hexagonal crystal family consists of two : hexagonal and rhombohedral. Each lattice system consists of one .

+ Hexagonal crystal family ! Bravais lattice ! Hexagonal ! Rhombohedral

In the hexagonal family, the crystal is conventionally described by a right prism unit cell with two equal axes ( a by a), an included angle of 120° ( γ) and a height ( c, which can be different from a) perpendicular to the two base axes.

The hexagonal unit cell for the rhombohedral Bravais lattice is the R-centered cell, consisting of two additional lattice points which occupy one body diagonal of the unit cell. There are two ways to do this, which can be thought of as two notations which represent the same structure. In the usual so-called obverse setting, the additional lattice points are at coordinates (, , ) and (, , ), whereas in the alternative reverse setting they are at the coordinates (,,) and (,,). In either case, there are 3 lattice points per unit cell in total and the lattice is non-primitive.

The Bravais lattices in the hexagonal crystal family can also be described by rhombohedral axes. The unit cell is a (which gives the name for the rhombohedral lattice). This is a unit cell with parameters a = b = c; α = β = γ ≠ 90°.

(1976). 9780030839931, Holt, Rinehart and Winston. .
In practice, the hexagonal description is more commonly used because it is easier to deal with a coordinate system with two 90° angles. However, the rhombohedral axes are often shown (for the rhombohedral lattice) in textbooks because this cell reveals the m symmetry of the crystal lattice.

The rhombohedral unit cell for the hexagonal Bravais lattice is the D-centered cell, consisting of two additional lattice points which occupy one body diagonal of the unit cell with coordinates (, , ) and (, , ). However, such a description is rarely used.


Crystal systems
181Hexagonal

The hexagonal crystal family consists of two : trigonal and hexagonal. A crystal system is a set of in which the point groups themselves and their corresponding are assigned to a (see table in Crystal system#Crystal classes).

The trigonal crystal system consists of the 5 point groups that have a single three-fold rotation axis, which includes space groups 143 to 167. These 5 point groups have 7 corresponding space groups (denoted by R) assigned to the rhombohedral lattice system and 18 corresponding space groups (denoted by P) assigned to the hexagonal lattice system. Hence, the trigonal crystal system is the only crystal system whose point groups have more than one lattice system associated with their space groups.

The hexagonal crystal system consists of the 7 point groups that have a single six-fold rotation axis. These 7 point groups have 27 space groups (168 to 194), all of which are assigned to the hexagonal lattice system.


Trigonal crystal system
The 5 point groups in this crystal system are listed below, with their international number and notation, their space groups in name and example crystals.
(1998). 039591096X, Houghton Mifflin Harcourt. . 039591096X
(1985). 9780471805809, Wiley. .


Hexagonal crystal system
The 7 point groups ( crystal classes) in this crystal system are listed below, followed by their representations in Hermann–Mauguin or international notation and Schoenflies notation, and examples, if they exist.

The unit cell volume is given by a2 c•sin(60°)


Hexagonal close packed
Hexagonal close packed (hcp) is one of the two simple types of atomic packing with the highest density, the other being the face-centered cubic (fcc). However, unlike the fcc, it is not a Bravais lattice, as there are two nonequivalent sets of lattice points. Instead, it can be constructed from the hexagonal Bravais lattice by using a two-atom motif (the additional atom at about (, , )) associated with each lattice point.


Multi-element structures
Compounds that consist of more than one element (e.g. ) often have crystal structures based on the hexagonal crystal family. Some of the more common ones are listed here. These structures can be viewed as two or more interpenetrating sublattices where each sublattice occupies the interstitial sites of the others.


Wurtzite structure
The wurtzite crystal structure is referred to by the Strukturbericht designation B4 and the hP4. The corresponding space group is No. 186 (in International Union of Crystallography classification) or P63mc (in Hermann–Mauguin notation). The Hermann-Mauguin symbols in P63mc can be read as follows:
  • 63.. : a six fold screw rotation around the c-axis
  • .m. : a mirror plane with normal {100}
  • ..c : glide plane in the c-directions with normal {120}.

Among the compounds that can take the wurtzite structure are itself ( with up to 8% instead of ), (AgI), (ZnO), (CdS), (CdSe), (α-SiC), (GaN), aluminium nitride (AlN), boron nitride (w-BN) and other . In most of these compounds, wurtzite is not the favored form of the bulk crystal, but the structure can be favored in some nanocrystal forms of the material.

In materials with more than one crystal structure, the prefix "w-" is sometimes added to the empirical formula to denote the wurtzite crystal structure, as in .

Each of the two individual atom types forms a sublattice which is hexagonal close-packed (HCP-type). When viewed all together, the atomic positions are the same as in (hexagonal ). Each atom is tetrahedrally coordinated. The structure can also be described as an HCP lattice of zinc with sulfur atoms occupying half of the tetrahedral voids or vice versa.

The wurtzite structure is (i.e., lacks inversion symmetry). Due to this, wurtzite crystals, such as GaN, InN, and AlN, can have properties such as and , which centrosymmetric crystals lack. The polar nature of these crystals enables electronic devices such as the high electron mobility transistors (HEMT).


Nickel arsenide structure
The nickel arsenide structure consists of two interpenetrating sublattices: a primitive hexagonal nickel sublattice and a hexagonal close-packed arsenic sublattice. Each nickel atom is octahedrally coordinated to six arsenic atoms, while each arsenic atom is trigonal prismatically coordinated to six nickel atoms.Inorganic Chemistry by Duward Shriver and Peter Atkins, 3rd Edition, W.H. Freeman and Company, 1999, pp.47,48. The structure can also be described as an HCP lattice of arsenic with nickel occupying each octahedral void.

Compounds adopting the NiAs structure are generally the , , and of .

The following are the members of the nickeline group:http://www.mindat.org/min-2901.html Mindat.org


In two dimensions
There is only one hexagonal Bravais lattice in two dimensions: the hexagonal lattice.


See also
  • Close-packing
  • Crystal structure


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
5s Time